The connection between holographic entanglement and complexity of purification

arXiv:1902.02475

Mahdis Ghodrati

Wuhan 2019

Holographic Entanglement Entropy

$$\mathcal{H}_{tot} = \mathcal{H}_A \otimes \mathcal{H}_{A^c}$$
$$\rho_A = \operatorname{Tr}_{A^c} \rho_{tot}$$
$$S_A := -tr\rho_A \log \rho_A$$

Entanglement structure contains geometric data!

Ryu & Takayanagi 2006

What is the CFT dual to linear growth of wormhole?

$$|\text{TFD}\rangle = \sum_{i} e^{-\beta E_i/2} |E_i\rangle_L |E_i\rangle_R$$

Brown, String 2017

$$|\psi(t_L, t_R)\rangle = \sum_i e^{-\beta E_i/2 + iE_i(t_L + t_R)} |E_i\rangle_L |E_i\rangle_R$$

Complexity

• Minimum number of gates required to prepare the desired target state! (one needs to find the optimal circuit)

$\frac{\text{tolerance:}}{||\psi\rangle - |\psi\rangle_{\text{Target}}|^2 \le \varepsilon}$

Myers, String 2017

Holographic dictionary for complexity: Complexity=Volume

• Evaluate proper volume of extremal codimension-one surface connecting Cauchy surfaces in boundary theory.

Myers, String 2017

Holographic dictionary for complexity: Complexity=Action

• Evaluate gravitational action for Wheeler-DeWitt patch= domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT.

Entanglement of Purification (EoP)

$$E_{P}(A:B) = \min_{\rho_{AB}=Tr_{A'B'|\psi\rangle\langle\psi|}} S(\rho_{AA'}) \qquad \mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{A}' \otimes \mathcal{H}_{B}'$$

$$\rho_{AA'} = \operatorname{Tr}_{BB'}[|\psi\rangle\langle\psi|]$$

$$|\psi\rangle \in \mathcal{H}_{AA'} \otimes \mathcal{H}_{BB'}$$

$$|\psi\rangle \in \mathcal{H}_{AA'} \otimes \mathcal{H}_{BB'}$$

$$\rho_{AB} = \operatorname{Tr}_{A'B'}|\psi\rangle\langle\psi|$$

$$\frac{1}{2}I(A:B) \leq E_{P}(A:B) \leq \min\{S(\rho_{A}), S(\rho_{B})\}} \qquad S_{A} := -tr\rho_{A}\log\rho_{A}$$

7

Entanglement of purification (EoP) for two subregions

$$A := \{l + D/2 > x_1 > D/2, -\infty < x_i < \infty, i = 2, 3, ..., d - 1\}$$
$$B := \{-l - D/2 < x_1 < -D/2, -\infty < x_i < \infty, i = 2, 3, ..., d - 1\}.$$

 $S_A = S_B = S(l)$ $S_{AB} = S(2l + D) + S(D)$

$$I(D, l) = S_A + S_B - S_{AB} = 2S(l) - S(D) - S(2l + D)$$

Background metric: BTZ Black hole

$$ds^{2} = \frac{1}{z^{2}} \left[-f(z)dt^{2} + \frac{dz^{2}}{f(z)} + d\vec{x}_{d-1}^{2} \right], \qquad f(z) := 1 - \frac{z^{d}}{z^{h}}$$

$$\sqrt{-g} = \sqrt{x_1'^2 + \frac{1}{f(z)} \left(\frac{1}{z}\right)^{d-1}}, \qquad x_1' = \frac{1}{\sqrt{\left(1 - \frac{z^d}{z_h^d}\right) \left(\frac{z_0^{2d-2}}{z^{2d-2}} - 1\right)}}.$$

$$w = 2 \int_{\delta}^{z_0} dz \frac{1}{\sqrt{\left(1 - \frac{z^d}{z_d^d}\right) \left(\frac{z_0^{2d-2}}{z^{2d-2}} - 1\right)}},$$

$$S(w) = \frac{2V_{d-2}}{4G_N} \int_{\delta}^{z_0} \frac{dz}{z^{d-1}} \frac{1}{\sqrt{\left(1 - \frac{z^d}{z_h^d}\right) \left(1 - \frac{z^{2d-2}}{z_0^{2d-2}}\right)}}.$$

The relationship between turning point and width of the strip

The relationship between entanglement entropy , width of strip and turning point

10

EoP in BTZ Black hole

$$ds^{2} = \frac{1}{z^{2}} \left[-f(z)dt^{2} + \frac{dz^{2}}{f(z)} + d\vec{x}_{d-1}^{2} \right], \qquad f(z) := 1 - \frac{z^{d}}{z^{h}}$$

$$E_W = \frac{c}{3} \min\left[A^{(1)}, A^{(2)}\right]$$

The computation of E_W for BTZ geometry.

Takayanagi-Umemoto 2017

$$\begin{split} \Sigma_{AB}^{(1)} & l > \beta \log(\sqrt{2} + 1)/\pi \\ \Sigma_{AB}^{(2)} & l < \beta \log(\sqrt{2} + 1)/\pi, \end{split}$$

 $S_A = S_B = S(l)$

 $A^{(1)} = \log \frac{\beta}{\pi}$

 $S_{AB} = S(2l + D) + S(D) \qquad I(D, l) = S_A + S_B - S_{AB} = 2S(l) - S(D) - S(2l + D)$

The connection between EoP and CoP,USTC Junior Cosmology

 $A^{(2)} = \log \frac{\beta \sinh\left(\frac{\pi l}{\beta}\right)}{2}$

Non-vanishing region of EoP

$$I(D, l) = S_A + S_B - S_{AB} = 2S(l) - S(D) - S(2l + D)$$
$$\sinh\left(\frac{l}{2}\right)^2 = \sinh\left(\frac{D_c}{2}\right)\sinh\left(\frac{2l + D_c}{2}\right)$$
$$\sinh\frac{D_c(2, l)}{2} = \sqrt{1 + 2\sqrt{2\cosh l}\cosh\frac{l}{2} + 2\cosh l}\left[\cosh\frac{3l}{2} - \sqrt{2}(\cosh l)^{3/2}\right]$$

The relationship between critical D and dimension d

The connection between EoP and CoP,USTC Junior Cosmology

Minimal Wedge cross section and EoP

The relationship between EoP and Temperature in various dimensions

The connection between EoP and CoP,USTC Junior Cosmology Symposium

15

The plot of EoP in three dimensions for different l and D for d = 4

The connection between EoP and the distance between strips D and their length I for d=2 Schwarzchild AdS black brane

17

Monogamy of Mutual Information (MMI)

 $I_3(A:BC)$ Is always negative!

 $S(AB) + S(BC) + S(AC) \ge S(A) + S(B) + S(C) + S(ABC)$

Properties of CoP?!

We choose this! Superadditivity $\mathcal{C}^V(A) + \mathcal{C}^V(B) \leq \mathcal{C}^V(\sigma),$ Supadditivity $\mathcal{C}^A(A) + \mathcal{C}^A(B) \geq \mathcal{C}^A(\sigma)$

Entropy Vector

 $\vec{S} = \{S(A), S(B), S(C), S(AB), S(AC), S(BC), S(ABC)\},\$

 $Q(\vec{S}) = q_A S(A) + q_B S(B) + q_C S(C) + q_{AB} S(AB) + q_{AC} S(AC) + q_{BC} S(BC) + q_{ABC} S(ABC),$

Complexity Vector

 $\vec{\mathcal{C}} = \{\mathcal{C}(A), \mathcal{C}(B), \mathcal{C}(C), \mathcal{C}(AB), \mathcal{C}(AC), \mathcal{C}(BC), \mathcal{C}(ABC)\}$

 $Q(\vec{\mathcal{C}}) = q_A \mathcal{C}(A) + q_B \mathcal{C}(B) + q_C \mathcal{C}(C) + q_{AB} \mathcal{C}(AB) + q_{AC} \mathcal{C}(AC) + q_{BC} \mathcal{C}(BC) + q_{ABC} \mathcal{C}(ABC),$

Complexity of purification (CoP) for two subregions

Conditional complexity?

$$\mathcal{C}(A|B) = \mathcal{C}(A) + \mathcal{C}(B) - \mathcal{C}(A \cup B)$$
$$C(A|B) = 2C(l) + C(D) - C(2l + D)$$

Complexity of purification (CoP) for two subregions

The relationship between the Volume and the length of one strip

The connection between EoP and CoP,USTC Junior Cosmology

The equation for CoP

$$V_{D} = 2L^{d-2} \left(\int_{\delta}^{z_{2l+D}} \frac{dz}{z^{d}\sqrt{1-z^{d}}} \int_{z}^{z_{2l+D}} \frac{dZ}{\sqrt{(1-Z^{d})(\frac{z_{2l+D}^{2d-2}}{Z^{2d-2}}-1)}} - \int_{\delta}^{z_{D}} \frac{dz}{z^{d}\sqrt{1-z^{d}}} \int_{z}^{z_{D}} \frac{dZ}{\sqrt{(1-Z^{d})(\frac{z_{D}^{2d-2}}{Z^{2d-2}}-1)}} - 2\int_{\delta}^{z_{l}} \frac{dz}{z^{d}\sqrt{1-z^{d}}} \int_{z}^{z_{l}} \frac{dZ}{\sqrt{(1-Z^{d})(\frac{z_{D}^{2d-2}}{Z^{2d-2}}-1)}}} \right)$$

$$V_{D} = \left(-\pi - \frac{1}{\delta}\operatorname{arctanh}\left(\frac{1}{z_{2l+D}}\right)\right) - \left(-\pi - \frac{1}{\delta}\operatorname{arctanh}\left(\frac{1}{z_{D}}\right)\right) - 2\left(-\pi - \frac{1}{\delta}\operatorname{arctanh}\left(\frac{1}{z_{l}}\right)\right)$$
$$= 2\pi + \frac{1}{\delta}\left[2\operatorname{arctanh}\left(\coth\left(\frac{l}{2}\right)\right) + \operatorname{arctanh}\left(\coth\left(\frac{D}{2}\right)\right) - \operatorname{arctanh}\left(\coth\left(\frac{2l+D}{2}\right)\right)\right)\right]$$
$$= 2\pi - \frac{i\pi}{\delta}$$
$$d=2$$

The connection between EoP and CoP,USTC Junior Cosmology

Symposium

The relationship between complexity of purification and D, l for d = 3

CoP for non-symmetrical systems

arXiv:1902.02243 P. Liu, Y. Ling, C. Niu, and J.-P. Wu

The new measure: The Interval Volume (VI)

$$VI = \frac{1}{2} \left(\int_{\epsilon}^{z_{2l+D}} \frac{dz}{z^d \sqrt{f(z)}} - \int_{\epsilon}^{z_D} \frac{dz}{z^d \sqrt{f(z)}} - 2 \int_{\epsilon}^{z_l} \frac{dz}{z^d \sqrt{f(z)}} \right)$$

$$G(z) \equiv \int_0^z \frac{dz}{z^d \sqrt{f(z)}} = \frac{-2z^{1-d}\sqrt{1-z^d} + z(d-2)_2 F_1\left(\frac{1}{2}, \frac{1}{d}, \frac{d+1}{d}, z^d\right)}{2(d-1)}$$

$$VI = \frac{1}{2} \left(G(z_{2l+D}) - G(z_D) \right) - G(z_l) + G(\epsilon)$$

$$\frac{4}{V_{d-1}}C_E(l,D) = \begin{cases} \frac{1}{2} \left(\operatorname{csch}(\frac{D}{2}) + 2\operatorname{csch}(\frac{l}{2}) - \operatorname{csch}(\frac{2l+D}{2}) \right), & d = 2, \\\\ \frac{1}{2}G(z_{2l+D}) - \frac{1}{2}G(z_D) - G(z_l), & d > 2. \end{cases}$$

29

Purification of BTZ black hole solution in massive gravity theory

$$ds^{2} = \frac{1}{z^{2}} \left[-f(z)dt^{2} + \frac{dz^{2}}{f(z)} + dx^{2} \right] \quad \text{with} \quad f(z) = 1 - z^{2} + m^{2}cc_{1}z$$

$$\mathcal{I} = -\frac{1}{16\pi} \int d^3x \sqrt{-g} \left[\mathcal{R} + 2 + m^2 \sum_i^4 c_i \mathcal{U}_i(g,h) \right]$$

Again, finding the relationship between turning point, width of the strip and entropy gives:

EoP in massive BTZ

EoP as function of m with fixed D = 0.1 and l = 0.8

The connection between EoP and CoP,USTC Junior Cosmology Symposium

33

CoP in massive BTZ

CoP as function of m with fixed D = 0.1 and l = 0.8

4/26/19

Purification of charged BTZ black hole

$$ds^{2} = \frac{1}{z^{2}} \left[-f(z)dt^{2} + \frac{dz^{2}}{f(z)} + dx^{2} \right]$$
$$f(z) = 1 - z^{2} + \frac{Q^{2}}{2}z^{2} \ln(z)$$
$$A = Q \ln(z) dt$$

$$w = 2 \int_{\delta}^{z_0} \frac{dz}{\sqrt{f}} \frac{1}{\sqrt{\frac{z_0^{2d-2}}{z^{2d-2}} - 1}},$$
$$S = \frac{2V_{d-2}}{4G_N} \int_{\delta}^{z_0} \frac{dz}{z^{d-1}} \frac{1}{\sqrt{f}} \frac{1}{\sqrt{1 - \frac{z^{2d-2}}{z_0^{2d-2}}}}.$$

The relationship between S(w) and w for charged BTZ black hole.

$$\Gamma = \int_{z_D}^{z_{2l+D}} \frac{dz}{z\sqrt{1 - z^2 + 2q^2 z^2 \ln \frac{1}{z}}}.$$

Purification of multipartite systems

 $\partial M_{ABC} = A \cup B \cup C \cup \Sigma_{ABC}^{min}.$

$$CoP_{A,B}\left((n+1)l+nD\right) = 2n\pi - \frac{1}{\delta}(ni\pi),$$

Operational and bit thread interpretations

The LO (Local Operations) is

$$\rho \to \sum_{i,j} (A_i \otimes B_j) . \rho . (A_i^{\dagger} \otimes B_j^{\dagger})$$

where

$$\sum_{i} A_i^{\dagger} A = 1, \qquad \sum_{j} B_j^{\dagger} B_j = 1$$

Operational and bit thread interpretations

$$\mathcal{S}(\mathcal{A}) = \max_{\vec{v}} \int_{\mathcal{A}} \vec{v} \ge \int_{\mathcal{A}} \vec{v}.$$

Max-Flow, Min-Cut

Operational and bit thread interpretations

Thank You!