The connection between holographic entanglement and complexity of purification

arXiv:1902.02475

Mahdis Ghodrati
Wuhan 2019

Holographic Entanglement Entropy

Minimal Surface

$$
\begin{gathered}
\mathcal{H}_{t o t}=\mathcal{H}_{A} \otimes \mathcal{H}_{A^{c}} \\
\rho_{A}=\operatorname{Tr}_{A^{c}} \rho_{t o t} \\
S_{A}:=-\operatorname{tr} \rho_{A} \log \rho_{A}
\end{gathered}
$$

Entanglement structure contains geometric data!

Ryu \& Takayanagi 2006

What is the CFT dual to linear growth of wormhole?

$$
\begin{aligned}
|\mathrm{TFD}\rangle & =\sum_{i} e^{-\beta E_{t} / 2}\left|E_{i}\right\rangle_{L}\left|E_{i}\right\rangle_{R} \\
\left|\psi\left(t_{L}, t_{R}\right)\right\rangle & =\sum_{i} e^{-\beta E_{t} / 2+i E_{\imath}\left(t_{L}+t_{R}\right)}\left|E_{i}\right\rangle_{L}\left|E_{i}\right\rangle_{R}
\end{aligned}
$$

Brown, String 2017

Complexity

- Minimum number of gates required to prepare the desired target state! (one needs to find the optimal circuit)

tolerance:

$$
||\psi\rangle-| \psi\rangle\left._{\text {Target }}\right|^{2} \leq \varepsilon
$$

Myers, String 2017

Holographic dictionary for complexity: Complexity=Volume

- Evaluate proper volume of extremal codimension-one surface connecting Cauchy surfaces in boundary theory.

Complexity $=$ Action

Myers, String 2017

Holographic dictionary for complexity: Complexity=Action

- Evaluate gravitational action for Wheeler-DeWitt patch= domain of dependence of bulk time slice connecting boundary Cauchy slices in CFT.

$$
\text { Complexity }=\frac{\text { Action }}{\pi \hbar}
$$

Entanglement of Purification (EoP)

$$
E_{P}(A: B)=\min _{\rho_{A B}=\operatorname{Tr}_{A^{\prime} B^{\prime}|\phi\rangle\langle\psi|}} S\left(\rho_{A A^{\prime}}\right)
$$

$$
I(A: B)=S\left(\rho_{A}\right)+S\left(\rho_{B}\right)-S\left(\rho_{A B}\right)
$$

$$
\frac{1}{2} I(A: B) \leq E_{P}(A: B) \leq \min \left\{S\left(\rho_{A}\right), S\left(\rho_{B}\right)\right\}
$$

$\mathcal{H}_{\mathcal{A}} \otimes \mathcal{H}_{\mathcal{B}} \otimes \mathcal{H}_{\mathcal{A}}^{\prime} \otimes \mathcal{H}_{\mathcal{B}}^{\prime}$
$\rho_{A A^{\prime}}=\operatorname{Tr}_{B B^{\prime}}[|\psi\rangle\langle\psi|]$.
$|\psi\rangle \in \mathcal{H}_{A A^{\prime}} \otimes \mathcal{H}_{B B^{\prime}}$ $\rho_{A B}=\operatorname{Tr}_{A^{\prime} B^{\prime}}|\psi\rangle\langle\psi|$
$S_{A}:=-\operatorname{tr} \rho_{A} \log \rho_{A}$

Entanglement of purification (EoP) for two subregions

$$
\begin{array}{r}
A:=\left\{l+D / 2>x_{1}>D / 2,-\infty<x_{i}<\infty, i=2,3, \ldots, d-1\right\} \\
B:=\left\{-l-D / 2<x_{1}<-D / 2,-\infty<x_{i}<\infty, i=2,3, \ldots, d-1\right\} .
\end{array}
$$

$$
\begin{aligned}
& S_{A}=S_{B}=S(l) \quad S_{A B}=S(2 l+D)+S(D) \\
& I(D, l)=S_{A}+S_{B}-S_{A B}=2 S(l)-S(D)-S(2 l+D)
\end{aligned}
$$

Background metric: BTZ Black hole

$$
d s^{2}=\frac{1}{z^{2}}\left[-f(z) d t^{2}+\frac{d z^{2}}{f(z)}+d \vec{x}_{d-1}^{2}\right], \quad f(z):=1-z^{d} / z_{h}^{d}
$$

$$
\begin{gathered}
\sqrt{-g}=\sqrt{x_{1}^{\prime 2}+\frac{1}{f(z)}}\left(\frac{1}{z}\right)^{d-1}, \quad x_{1}^{\prime}=\frac{1}{\sqrt{\left(1-\frac{z^{d}}{z_{h}^{d}}\right)\left(\frac{z_{0}^{2 d-2}}{z^{2 d-2}}-1\right)}} \\
w=2 \int_{\delta}^{z_{0}} d z \frac{1}{\sqrt{\left(1-\frac{z^{d}}{z_{d}^{d}}\right)\left(\frac{z_{0}^{2 d-2}}{z^{2 d-2}}-1\right)}} \\
S(w)=\frac{2 V_{d-2}}{4 G_{N}} \int_{\delta}^{z_{0}} \frac{d z}{z^{d-1} \frac{1}{\sqrt{\left(1-\frac{z^{d}}{z_{h}^{d}}\right)\left(1-\frac{z^{2 d-2}}{z_{0}^{2 d-2}}\right)}}}
\end{gathered}
$$

The relationship between turning point and width of the strip

The relationship between entanglement entropy , width of strip and turning point

EoP in BTZ Black hole

$$
d s^{2}=\frac{1}{z^{2}}\left[-f(z) d t^{2}+\frac{d z^{2}}{f(z)}+d \vec{x}_{d-1}^{2}\right], \quad f(z):=1-z^{d} / z_{h}^{d}
$$

$$
E_{W}=\frac{c}{3} \min \left[A^{(1)}, A^{(2)}\right]
$$

The computation of E_{W} for BTZ geometry.
Takayanagi-Umemoto 2017

$$
A^{(1)}=\log \frac{\beta}{\pi \epsilon} \quad A^{(2)}=\log \frac{\beta \sinh \left(\frac{\pi l}{\beta}\right)}{\pi \epsilon}
$$

$$
\begin{array}{ll}
\Sigma_{A B}^{(1)} & l>\beta \log (\sqrt{2}+1) / \pi \\
\Sigma_{A B}^{(2)} & l<\beta \log (\sqrt{2}+1) / \pi
\end{array}
$$

$$
S_{A}=S_{B}=S(l)
$$

$$
S_{A B}=S(2 l+D)+S(D) \quad I(D, l)=S_{A}+S_{B}-S_{A B}=2 S(l)-S(D)-S(2 l+D)
$$

Non-vanishing region of EoP

The relationship between critical D and dimension d

Minimal Wedge cross section and EoP

$$
\Gamma=\int_{z_{D}}^{z_{2 l+D}} \frac{d z}{z^{d-1} \sqrt{1-\frac{z^{d}}{z_{h}^{d}}}}
$$

The relationship between EoP and Temperature in various dimensions

The plot of EoP in three dimensions for different l and D for $d=4$

The connection between EoP and the distance between strips D and their length I for $\mathbf{d}=\mathbf{2}$ Schwarzchild AdS black brane

Monogamy of Mutual Information (MMI)

$$
I_{3}(A: B C) \text { Is always negative! }
$$

$$
S(A B)+S(B C)+S(A C) \geq S(A)+S(B)+S(C)+S(A B C)
$$

Properties of CoP?!

We choose this!

$$
\begin{array}{ll}
\text { Superadditivity } & \mathcal{C}^{V}(A)+\mathcal{C}^{V}(B) \leq \mathcal{C}^{V}(\sigma) \\
\text { Supadditivity } & \mathcal{C}^{A}(A)+\mathcal{C}^{A}(B) \geq \mathcal{C}^{A}(\sigma)
\end{array}
$$

Entropy Vector

$$
\begin{gathered}
\vec{S}=\{S(A), S(B), S(C), S(A B), S(A C), S(B C), S(A B C)\} \\
Q(\vec{S})=q_{A} S(A)+q_{B} S(B)+q_{C} S(C)+ \\
q_{A B} S(A B)+q_{A C} S(A C)+q_{B C} S(B C)+q_{A B C} S(A B C)
\end{gathered}
$$

Complexity Vector

$$
\begin{gathered}
\overrightarrow{\mathcal{C}}=\{\mathcal{C}(A), \mathcal{C}(B), \mathcal{C}(C), \mathcal{C}(A B), \mathcal{C}(A C), \mathcal{C}(B C), \mathcal{C}(A B C)\} \\
Q(\overrightarrow{\mathcal{C}})=q_{A} \mathcal{C}(A)+q_{B} \mathcal{C}(B)+q_{C} \mathcal{C}(C)+ \\
q_{A B} \mathcal{C}(A B)+q_{A C} \mathcal{C}(A C)+q_{B C} \mathcal{C}(B C)+q_{A B C} \mathcal{C}(A B C),
\end{gathered}
$$

Complexity of purification (CoP) for two subregions

Conditional complexity?

$$
\begin{aligned}
& \mathcal{C}(A \mid B)=\mathcal{C}(A)+\mathcal{C}(B)-\mathcal{C}(A \cup B) \\
& C(A \mid B)=2 C(l)+C(D)-C(2 l+D)
\end{aligned}
$$

Complexity of purification (CoP) for two subregions

$$
\begin{gathered}
C o P(A, B)=\frac{V_{D}}{8 \pi G}=\frac{1}{8 \pi G}\left(\frac{V_{A B C D}-V_{A}-V_{B}}{2}\right) \\
C o P \sim \frac{1}{2}(C(2 l+D)-2 C(l)-C(D))=-\frac{1}{2} C(A \mid B) .
\end{gathered}
$$

The relationship between the Volume and the length of one strip

The equation for CoP

$$
\begin{aligned}
V_{D}= & 2 L^{d-2}\left(\int_{\delta}^{z_{2 l+D}} \frac{d z}{z^{d} \sqrt{1-z^{d}}} \int_{z}^{z_{2 l+D}} \frac{d Z}{\sqrt{\left(1-Z^{d}\right)\left(\frac{z_{2 l-D}^{z_{2 l-}^{2 d}} Z^{2 d-2}}{}-1\right)}}\right. \\
& -\int_{\delta}^{z_{D}} \frac{d z}{z^{d} \sqrt{1-z^{d}}} \int_{z}^{z_{D}} \frac{d Z}{\sqrt{\left(1-Z^{d}\right)\left(\frac{z_{D}^{2 d-2}}{Z^{2 d-2}}-1\right)}} \\
& \left.-2 \int_{\delta}^{z_{l}} \frac{d z}{z^{d} \sqrt{1-z^{d}}} \int_{z}^{z_{l}} \frac{d Z}{\sqrt{\left(1-Z^{d}\right)\left(\frac{z_{2}^{d d-2}}{Z^{d d-2}}-1\right)}}\right)
\end{aligned}
$$

$$
\begin{aligned}
V_{D}=\left(-\pi-\frac{1}{\delta} \operatorname{arctanh}\left(\frac{1}{z_{2 l+D}}\right)\right)- & \left(-\pi-\frac{1}{\delta} \operatorname{arctanh}\left(\frac{1}{z_{D}}\right)\right)-2\left(-\pi-\frac{1}{\delta} \operatorname{arctanh}\left(\frac{1}{z_{l}}\right)\right) \\
=2 \pi+\frac{1}{\delta}\left[2 \operatorname{arctanh}\left(\operatorname{coth}\left(\frac{l}{2}\right)\right)+\right. & \left.\operatorname{arctanh}\left(\operatorname{coth}\left(\frac{D}{2}\right)\right)-\operatorname{arctanh}\left(\operatorname{coth}\left(\frac{2 l+D}{2}\right)\right)\right] \\
& =2 \pi-\frac{i \pi}{\delta}
\end{aligned}
$$

The relationship between complexity of purification and D, l for $d=3$

CoP for non-symmetrical systems

arXiv:1902.02243 P. Liu, Y. Ling, C. Niu, and J.-P. Wu

The new measure: The Interval Volume (VI)

$$
V I=\frac{1}{2}\left(\int_{\epsilon}^{z_{2 l+D}} \frac{d z}{z^{d} \sqrt{f(z)}}-\int_{\epsilon}^{z_{D}} \frac{d z}{z^{d} \sqrt{f(z)}}-2 \int_{\epsilon}^{z_{l}} \frac{d z}{z^{d} \sqrt{f(z)}}\right)
$$

$$
\begin{gathered}
G(z) \equiv \int_{0}^{z} \frac{d z}{z^{d} \sqrt{f(z)}}=\frac{-2 z^{1-d} \sqrt{1-z^{d}}+z(d-2)_{2} F_{1}\left(\frac{1}{2}, \frac{1}{d}, \frac{d+1}{d}, z^{d}\right)}{2(d-1)} \\
V I=\frac{1}{2}\left(G\left(z_{2 l+D}\right)-G\left(z_{D}\right)\right)-G\left(z_{l}\right)+G(\epsilon)
\end{gathered}
$$

$$
\frac{4}{V_{d-1}} C_{E}(l, D)= \begin{cases}\frac{1}{2}\left(\operatorname{csch}\left(\frac{D}{2}\right)+2 \operatorname{csch}\left(\frac{l}{2}\right)-\operatorname{csch}\left(\frac{2 l+D}{2}\right)\right), & d=2 \\ \frac{1}{2} G\left(z_{2 l+D}\right)-\frac{1}{2} G\left(z_{D}\right)-G\left(z_{l}\right), & d>2\end{cases}
$$

$$
\begin{aligned}
\text { Positivity: } & C_{A}^{P}>0, \\
\text { Monotonicity: } & C_{A+\delta A}^{P}>C_{A}^{P}, \\
\text { Weak Superadditivity: } & C_{A}^{P}+C_{\delta A}^{P}<2 C_{A+\delta A}^{P}
\end{aligned}
$$

Purification of BTZ black hole solution in massive gravity theory

$$
d s^{2}=\frac{1}{z^{2}}\left[-f(z) d t^{2}+\frac{d z^{2}}{f(z)}+d x^{2}\right] \quad \text { with } \quad f(z)=1-z^{2}+m^{2} c c_{1} z
$$

$$
\mathcal{I}=-\frac{1}{16 \pi} \int d^{3} x \sqrt{-g}\left[\mathcal{R}+2+m^{2} \sum_{i}^{4} c_{i} \mathcal{U}_{i}(g, h)\right]
$$

Again, finding the relationship between turning point, width of the strip and entropy gives:

$$
w=2 \int_{\delta}^{z_{0}} d z \frac{1}{\sqrt{f\left(\frac{z_{0}^{2}}{z^{2}}-1\right)}},
$$

$$
S(\omega)=\frac{1}{2} \int_{\delta}^{z_{0}} \frac{d z}{z} \frac{1}{\sqrt{f(z)\left(1-\frac{z^{2}}{z_{0}^{2}}\right)}} .
$$

EoP in massive BTZ

$$
\begin{aligned}
\Gamma & =\int_{z_{D}}^{z_{2 l+D}} \frac{d z}{z \sqrt{1-z^{2}+m^{2} c c_{1} z}}, \\
2 E(l, D) & =\left.\frac{\log z}{\log \left(2+m^{2} z+2 \sqrt{1+\left(m^{2}-z\right) z}\right)}\right|_{z_{D}} ^{z_{2 l+D}}
\end{aligned}
$$

EoP as function of m with fixed $D=0.1$ and $l=0.8$

CoP in massive BTZ

$$
\begin{aligned}
C o P & =\int_{\delta}^{z_{2 l+D}} \frac{d z}{z^{2} \sqrt{1-z^{2}+m^{2} c c_{1} z}} \int_{z}^{z_{2 l+D}} \frac{d Z}{\sqrt{\left(1-z^{2}+m^{2} c c_{1} z\right)\left(z_{2 l+D}^{2} / Z^{2}-1\right)}} \\
& -\int_{\delta}^{z_{D}} \frac{d z}{z^{2} \sqrt{1-z^{2}+m^{2} c c_{1} z}} \int_{z}^{z_{D}} \frac{d Z}{\sqrt{\left(1-z^{2}+m^{2} c c_{1} z\right)\left(z_{D}^{2} / Z^{2}-1\right)}} \\
& -2 \int_{\delta}^{z_{l}} \frac{d z}{z^{2} \sqrt{1-z^{2}+m^{2} c c_{1} z}} \int_{z}^{z_{l}} \frac{d Z}{\sqrt{\left(1-z^{2}+m^{2} c c_{1} z\right)\left(z_{l}^{2} / Z^{2}-1\right.}}
\end{aligned}
$$

CoP as function of m with fixed $D=0.1$ and $l=0.8$

Purification of charged BTZ black hole

$$
\begin{aligned}
d s^{2} & =\frac{1}{z^{2}}\left[-f(z) d t^{2}+\frac{d z^{2}}{f(z)}+d x^{2}\right] & w=2 \int_{\delta}^{z_{0}} \frac{d z}{\sqrt{f}} \frac{1}{\sqrt{\frac{z_{0}^{2 d-2}}{z^{2 d-2}}-1}}, \\
f(z) & =1-z^{2}+\frac{Q^{2}}{2} z^{2} \ln (z) & S=\frac{2 V_{d-2}}{4 G_{N}} \int_{\delta}^{z_{0}} \frac{d z}{z^{d-1}} \frac{1}{\sqrt{f}} \frac{1}{\sqrt{1-\frac{z^{2 d-2}}{z_{0}^{d-2}}}} .
\end{aligned}
$$

The relationship between $S(w)$ and w for charged BTZ black hole.

$$
\Gamma=\int_{z_{D}}^{z_{2 l+D}} \frac{d z}{z \sqrt{1-z^{2}+2 q^{2} z^{2} \ln \frac{1}{z}}} .
$$

Purification of multipartite systems

$$
\partial M_{A B C}=A \cup B \cup C \cup \sum_{A B C}^{\min } .
$$

$$
C o P_{A, B}((n+1) l+n D)=2 n \pi-\frac{1}{\delta}(n i \pi),
$$

Operational and bit thread interpretations

The LO (Local Operations) is
where

$$
\begin{array}{r}
\rho \rightarrow \sum_{i, j}\left(A_{i} \otimes B_{j}\right) \cdot \rho \cdot\left(A_{i}^{\dagger} \otimes B_{j}^{\dagger}\right) \\
\sum_{i} A_{i}^{\dagger} A=1, \quad \sum_{j} B_{j}^{\dagger} B_{j}=1
\end{array}
$$

Operational and bit thread interpretations

$$
\mathcal{S}(\mathcal{A})=\max _{\vec{v}} \int_{\mathcal{A}} \vec{v} \geq \int_{\mathcal{A}} \vec{v}
$$

Max-Flow, Min-Cut

Operational and bit thread interpretations

Thank You!

